Effects of lovastatin therapy on susceptibility of LDL to oxidation during alpha-tocopherol supplementation.

نویسندگان

  • A Palomäki
  • K Malminiemi
  • O Malminiemi
  • T Solakivi
چکیده

A randomized, double-masked, crossover clinical trial was carried out to evaluate whether lovastatin therapy (60 mg daily) affects the initiation of oxidation of low density lipoprotein (LDL) in cardiac patients on alpha-tocopherol supplementation therapy (450 IU daily). Twenty-eight men with verified coronary heart disease and hypercholesterolemia received alpha-tocopherol with lovastatin or with dummy tablets in random order. The two 6-week, active-treatment periods were preceded by a washout period of at least 8 weeks. The oxidizability of LDL was determined by 2 methods ex vivo. The depletion times for LDL ubiquinol and LDL alpha-tocopherol were determined in timed samples taken during oxidation induced by 2, 2-azobis(2,4-dimethylvaleronitrile). Copper-mediated oxidation of LDL isolated by rapid density-gradient ultracentrifugation was used to measure the lag time to the propagation phase of conjugated-diene formation. alpha-Tocopherol supplementation led to a 1.9-fold concentration of reduced alpha-tocopherol in LDL (P<0.0001) and to a 2.0-fold longer depletion time (P<0.0001) of alpha-tocopherol compared with determinations after the washout period. A 43% prolongation (P<0.0001) was seen in the lag time of conjugated-diene formation. Lovastatin decreased the depletion time of reduced alpha-tocopherol in metal ion-independent oxidation by 44% and shortened the lag time of conjugated-diene formation in metal ion-dependent oxidation by 7%. In conclusion, alpha-tocopherol supplementation significantly increased the antioxidative capacity of LDL when measured ex vivo, which was partially abolished by concomitant lovastatin therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Lovastatin Therapy on Susceptibility of LDL to Oxidation During a-Tocopherol Supplementation

A randomized, double-masked, crossover clinical trial was carried out to evaluate whether lovastatin therapy (60 mg daily) affects the initiation of oxidation of low density lipoprotein (LDL) in cardiac patients on a-tocopherol supplementation therapy (450 IU daily). Twenty-eight men with verified coronary heart disease and hypercholesterolemia received a-tocopherol with lovastatin or with dumm...

متن کامل

Ubiquinone supplementation during lovastatin treatment: effect on LDL oxidation ex vivo.

A randomized, double-masked, placebo-controlled cross-over trial was carried out to evaluate whether ubiquinone supplementation (180 mg daily) corrects impaired defence against initiation of oxidation of low density lipoprotein (LDL) related to effective (60 mg daily) lovastatin treatment. Nineteen men with coronary heart disease and hypercholesterolemia received lovastatin with or without ubiq...

متن کامل

Effect of alpha-tocopherol on LDL oxidation and glycation: in vitro and in vivo studies.

Much data support a role for both low density lipoprotein (LDL) oxidation and glycation in atherogenesis. While alpha-tocopherol decreases the oxidative susceptibility of LDL, its role in decreasing LDL glycation is unclear. Hence we tested the effect of alpha-tocopherol both in vitro and in vivo on LDL oxidation and glycation. LDL was isolated after enrichment of plasma with alpha-tocopherol. ...

متن کامل

Effect of combined supplementation with alpha-tocopherol, ascorbate, and beta carotene on low-density lipoprotein oxidation.

BACKGROUND Data continue to accumulate supporting a proatherogenic role for oxidized low-density lipoprotein (Ox-LDL). Antioxidant micronutrients such as ascorbate, alpha-tocopherol, and beta carotene, levels of which can be favorably manipulated by dietary measures without side effects, could be a safe approach in inhibiting LDL oxidation. In fact, in vitro studies have shown that all three an...

متن کامل

The Effect of ? -Tocopherol on Copper Binding to Low Density Lipoprotein

The oxidative modification of low density lipoprotein (LDL) may play an important role in atherogenesis. Antioxidants that can prevent LDL oxidation may act as antiatherogens. Our understanding of the mechanism of LDL oxidation and factors that determine its susceptibility to oxidation is still incomplete. Copper is a candidate for oxidizing LDL in atherosclerotic lesions. The binding of copper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 1999